
 

 

  

Abstract— Boundary Value Methods (BVMs) are methods based 

on Linear Multistep Methods (LMMs), which are used for the 

numerical approximation of Differential Equations (DEs). These 

methods were introduced to overcome the weaknesses of the LMMs. 

In this paper, we introduce a new class of BVMs – Hybrid 

Boundary Value Methods (HBVMs) and used them to solve first 

order systems BVPs with mixed boundary conditions by using the 

specific cases: 2, 4 and 6. These methods are also based on LMMs 

where data are used at both step and off-step points. 

The maximum errors and rate of convergence (ROC) of the 

solutions are reported for these cases to illustrate the effectiveness of 

these new class of methods. 

 

Keywords— Boundary value methods, boundary value problems, 

hybrid formula, linear multistep method.  

I. INTRODUCTION 

UMERICAL analysis continues to be an active field of 

study in science and engineering as Numerical Analysts 

have introduced and continues to develop new and better 

numerical methods for solving Differential problems resulting 

from the modelisation of real world phenomena [1] – [4]. 

The Boundary Value Methods (BVMs) were introduced to 

overcome the limitations suffers by the Linear Multistep 

Methods (LMMs). Some of these problems are highlighted in 

[5] – [7]. 

Several BVMs have been introduced and their stability 

analysis fully investigated. See [7] – [18] for comprehensive 

work on BVMs. 

In this work, we present the hybrids of the BVMs namely 

Hybrid Boundary Value Methods (HBVMs). As hybrid 

methods share the characteristic property of Runge-Kutta 

methods, which are more flexible than the LMMs in the way 

they are used [19] – [22]. Our intention is to develop BVMs 

that share this characteristic. 

This is done by using the Adam Moulton Methods at both step 
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and off-step points. These methods are then applied as BVMs 

and used to solve the two-point BVP of the form: 
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where all 2 2:f   are continuous functions that satisfy the  

existence and uniqueness conditions, guaranteed by Henrici in 

[23] 

The numerical integration of BVPs by BVMs were first 

considered by Brugnano and Trigiante in [24] where they used 

the two symmetric schemes: Extended Trapezoidal Rule 

(ETR) of order 4 and Top Order Method (TOM) of order 6. 

II. OVERVIEW OF THE BOUNDARY VALUE METHODS [25]- [26] 

In this section, we give a brief description of the BVMs. 

Consider the IVP: 

 ,y f x y  ,   0 0y x y ,   0 , Nx x x           (2).  

To approximate this problem, we consider the k-step LMF:  
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              (3) 

This discrete problem needs k  independent conditions to 

be imposed so as to get the discrete solution  ny . Now, the 

first 1k   values need to be generated, since the IVP (2) has 

provided the first value
0y . Hence, we are to obtain the 1k   

values: 
0 1, , ky y 

 of the discrete solution. 

By this process, we say that the given continuous IVP has 

been approximated by means of a discrete IVP and this is what 

is known as IVM. 

On the other hand, if we decide to fix the first 1k  values of 

the discrete solution, 
10 1, , ky y 

 and the last 2k  values of 

the discrete solution, 
2 1, ,N N ky y  

 such that 
1 2,k k  are 

integers and 
1 2k k k  . The discrete problem becomes. 

2 2
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By this, we have succeeded in fixing the first 1k  and final 

2k  values of the discrete solution. 

By this process, we say that the continuous IVP has been 

approximated by means of a discrete BVP and this approach is 
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what is called BVM.  

III. DERIVATION OF METHODS (HBVMS) 

We shall construct, via interpolation and collocation, 
methods of the form: 
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For example for 1k   , 1v   we have the formula 

1 1
2 2

1 0 0 1n n n nn
y y h f f f   

    
 

  

After the derivation we implement these LMMs as BVMs 

while considering two specific cases: 4 and 6k  . 

A. For case k=2 

The main method is as follows: 

 1 3
2 2

2 1 27 12 7 32 7
45

n n n n n n n
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which is used together with the following initial methods: 
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2 2 2

0 0 1 2251 264 19 +646 106
1400
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and the final methods 
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 B. For case k=4 

The main method is as follows: 

  1 3 5 7
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which is used together with the following initial methods: 

1 1
2 2
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and the final methods 
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C. For case k=6 

The main method is as follows: 
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which is used together with the following initial methods: 
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IV. NUMERICAL EXAMPLES 

In this section, we apply the proposed methods to linear and 

nonlinear first order systems BVPs, which were converted 

from the second order BVPs in [27]. In Table I and Table II, 

the maximum errors and the convergence rates of the solutions 

for case 1 and case 2 are presented respectively. Also, Fig. 1 

and Fig. 2 show the graphs of their exact solutions. 

 

Case 1: Consider the linear BVP [27]: 

1 2y y   
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for  0 1x ,  

with boundary conditions: 

   1 20 2 0 1y y   ,     1 21 2 1 3y y e    
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Case 2: Consider the nonlinear BVP [27]: 
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Fig. 1: Exact Solution of Case 1 

 

 

 

 

 

 
 

Fig. 2: Approximate Solution of Case 1 computed with 

HBVM (k = 2, h = 0.025) 

 

 

 

 

 

 
 

Fig. 3: Approximate Solution of Case 1 computed with 

HBVM (k = 4, h = 0.025) 

 
 

Fig. 4: Exact Solution of Case 2 

 

 

 

 

 

 
 

Fig. 5: Approximate Solution of Case 2 computed with 

HBVM (k = 4, h = 0.025) 

 

 

 

 

 

 
 

Fig. 6: Approximate Solution of Case 2 computed with 

HBVM (k = 6, h = 0.025) 
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V. CONCLUSION 

A new class of BVMs: HBVMs were introduced with cases 

2, 4 and 6 and applied to two-point BVPs with mixed 

boundary conditions. The maximum error and rate of 

convergence of the solutions were presented to illustrate the 

efficiency of these new methods. 
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Table I: Maximum errors for HBVMs of order 2, 4 and 6 (Case 1) 

 

h 

HBVM of order 2 

e


               Rate 

HBVM of order 4 

e


                Rate 

HBVM of order 6 

e


                Rate 

1e-1 1.24993e-09 - 1.50576e-11 - 9.07355e-09 - 

5e-2 1.96973e-11 5.99 5.29879e-12 1.51 8.89963e-09 0.03 

2.5e-2 3.09246-13 5.99 6.25188e-12 0.24 4.24738e-09 1.07 

1.25e-2 5.24044e-15 5.88 5.40719e-12 0.21 6.98025e-09 0.72 

6.25e-3 1.60119e-15 1.71 1.30816e-11 1.27 1.09309e-08 0.65 

 

 

 

 

Table II: Maximum errors for HBVMs of order 2, 4 and 6 (Case 2) 

 

h 

HBVM of order 2 

e


               Rate 

HBVM of order 4 

e


                Rate 

HBVM of order 6 

e


                Rate 

1e-1 1.35839e-07 - 3.70304e-07 - 4.51940e-08 - 

5e-2 2.54603e-09 5.74 1.94881e-09 7.57 1.79255e-09 4.66 

2.5e-2 4.39060-11 5.86 5.98631e-12 8.35 6.75463e-10 1.41 

1.25e-2 7.21997e-13 5.93 4.08598e-12 0.55 1.73838e-09 1.36 

6.25e-3 1.15875e-14 5.96 7.28745e-12 0.83 9.31409e-10 0.90 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018

ISSN: 1998-4464 6




