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The Solution of Boundary Value Problems with
Mixed Boundary Conditions via Boundary
Value Methods

Grace O. Akinlabi, Raphael B. Adeniyi, and Enahoro A. Owoloko

Abstract— Boundary Value Methods (BVMs) are methods based
on Linear Multistep Methods (LMMSs), which are used for the
numerical approximation of Differential Equations (DEs). These
methods were introduced to overcome the weaknesses of the LMMs.

In this paper, we introduce a new class of BVMs — Hybrid
Boundary Value Methods (HBVMs) and used them to solve first
order systems BVPs with mixed boundary conditions by using the
specific cases: 2, 4 and 6. These methods are also based on LMMs
where data are used at both step and off-step points.

The maximum errors and rate of convergence (ROC) of the
solutions are reported for these cases to illustrate the effectiveness of
these new class of methods.

Keywords— Boundary value methods, boundary value problems,
hybrid formula, linear multistep method.

I. INTRODUCTION

UMERICAL analysis continues to be an active field of

study in science and engineering as Numerical Analysts
have introduced and continues to develop new and better
numerical methods for solving Differential problems resulting
from the modelisation of real world phenomena [1] — [4].

The Boundary Value Methods (BVMs) were introduced to
overcome the limitations suffers by the Linear Multistep
Methods (LMMs). Some of these problems are highlighted in
[51-[7].

Several BVMs have been introduced and their stability
analysis fully investigated. See [7] — [18] for comprehensive
work on BVMs.

In this work, we present the hybrids of the BVMs namely
Hybrid Boundary Value Methods (HBVMs). As hybrid
methods share the characteristic property of Runge-Kutta
methods, which are more flexible than the LMMs in the way
they are used [19] — [22]. Our intention is to develop BVMs
that share this characteristic.

This is done by using the Adam Moulton Methods at both step
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and off-step points. These methods are then applied as BVMs
and used to solve the two-point BVP of the form:;
y{(x): fl(x,yl(X),yz(x))
Y5 (%) = f, (% %1(%), 2 (x))
3,y(0)-byy(0)=a, . ay(l)-by(l)=a
where all f:R? —R? are continuous functions that satisfy the
existence and unigueness conditions, guaranteed by Henrici in
23
'[I'hg numerical integration of BVPs by BVMs were first
considered by Brugnano and Trigiante in [24] where they used

the two symmetric schemes: Extended Trapezoidal Rule
(ETR) of order 4 and Top Order Method (TOM) of order 6.

€]

Il. OVERVIEW OF THE BOUNDARY VALUE METHODS [25]- [26]

In this section, we give a brief description of the BVMs.
Consider the IVP:

y'=1(xy), y(%)=Yo, X€[%.%] 2.
To approximate this problem, we consider the k-step LMF:
k 3
zarymr = hZﬂr fn+r (3)
r=0 r=0

This discrete problem needs k independent conditions to
be imposed so as to get the discrete solution{y,} . Now, the

first k —1 values need to be generated, since the IVP (2) has
provided the first value y, . Hence, we are to obtain the k-1

values: vy,,...,y,_, of the discrete solution.

By this process, we say that the given continuous IVP has
been approximated by means of a discrete I\VP and this is what
is known as IVM.

On the other hand, if we decide to fix the first K, values of
the discrete solution, Y,,..., ykr1 and the last k2 values of
the discrete solution, yy,...,Yy,,, such that k,k, are
integers and k, +k, =k . The discrete problem becomes.

k, k,
Z ar+k1 yn+r = h Z ﬁHkl fn+r (4)

r=—k r=—k;
By this, we have succeeded in fixing the first kK, and final
K, values of the discrete solution.

By this process, we say that the continuous IVP has been
approximated by means of a discrete BVP and this approach is
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what is called BVM.

I1l. DERIVATION OF METHODS (HBVMS) Vg 7=
We shall construct, via interpolation and collocation,
methods of the form:
k
Yoow = Yoo = h z :Br 1:n+r Vv~ Yna =
r=0(3)

k—+1, for odd k
where v = c

—, forevenk

Yn = Yna =

For example for K =1, v =1 we have the formula
Yorr = Yo =h| Aoy + BT,y + B |

After the derivation we implement these LMMs as BVMs
while considering two specific cases: k=4 and 6.

C. For case k=

226800

6

~5h
290304

h

© 226800
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85, +13606f, , +10546f ,

6560f, ,+7442f, ,—49f,
| 2021, , +60141, , +4418f

127 f, +44446f, , + 434801, ,
~494f, ,-23f, ,~1976f ,

+141928f , 872, , +184f

~32377 f, +42494f, _, +116120f,
+31154f,_, +833f,_,
[22823 fo +15011fN3J

8
+9341f , +953f

The main method is as follows:

A. For case k=2
The main method is as follows:
h
—y =75 v12f +7f +32(f , +7F J
yn+2 Yn 45[ n n+l n+2 ( n+3 n+5) yn+4 _ yn+2 _

which is used together with the following initial methods:
h

Vi Yo = m[zslfo — 2641, ~19f, +646f, +106f%J

and the final methods

h
Vs =Y :fﬁ[zgfﬂzzﬁw1 ~ 1241, , +4f,, |
27,9 3 51, 21 fNJJ

s =Yy =h| o
Tug ™ Leo 20 " 160 "7 80 Mt 80

B. Forcase k=4 N | 6279127, - 35074560661
The main method is as follows: Vs = Y2 = 1525504000| o £
~3243018230f, +15178447404f,
o136 :’494 fnﬂf* 108701, , 19451486164f, +1927727350f,
—y . =———| +5494f . +13 : :
yn+3 yn+1 28350 n+3 n+4 +83198274fL
-32(71,., -551( 1, , + ., )+ 7., - 2 ;
which is used together with the following initial methods: 456196373f, + 72649122828f,
230531 30447861, _1317280f —~2008959454935f, — 576826591488f,
_h 2942E§6f 7997 fl 1375594f2 " -171945526185f, —15894332172f,
Yi=h= - 37 4= 1 Y-y, = ———— | ~184320877f, — 7728247206f,
7257600 + Y27 5230697472000 ° }
| +1752542f, +755042f, + 68906, ~1152341705090f, +826951939524f,
h 7207 1,+1638286, - 8331201, +353393854524f, + 62574497410,
Yy =Y, = ooeons| ~142094f, 32331, ~99626 1, | +2505840294f, ]
| +26318381, + 397858 1, + 315941, 184329877f, + 22105977612f,
h | 81f,+19118f, +44640f, — 2862f, — 49f, +1284137567145f, — 510641870592f,
Y5~ Y17 3o600| —1098, + 508141, + 232341, +552f, ) ~116161302825f, — 9856152588,
and the final methods Y ~Y: = goa0pe7aT2000| 1000 893, ~ 28524847741,
-9f, +158f,_, —360f,_, +181, _, —125367467650f% +1771726903236f%
- h of, , +333f, +260516522556, -+ 40149664130,
2800| +401f,_, +8 +1516601766f,,

+403f, , +279f, ,
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28151, +4721736f, ., +529200405f, ,
+1047943344f _, + 529200405,
) +4721736f . +28151f, .
2554051500 7923f . +531095f .

—64| —23916042f , —23916042f ,

+531005f , +7923f

which is used together with the following initial methods:

50840663f, —15631690812f,
~17564506125f, —13516516608f,
~4999623795f, — 510865092f
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h
g 21525504000

5h
2 41845579776

7h
yl,zl*yz =

and the final methods

h
Yns~ Y2 =

h
Yns = Yn2 =

2h

Yue = Yn-2 = 538512875
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688087f, +80355012f;
+4938122355f, +10933456128f,
—824424435f, —51176388f,

Y, =Y, = ————————| —521303f, —10514754f%

—451692790f, +11828012076f,
+5609039316f,
+229447670f, + 7465026f ,

387173f, +40903116f,
+2009196729f, + 4356823296f,
+4948419015f, —100766412f
Yo =Y, =———————| —637669f, —5670918f%

—211497890f, + 4450127364f,
+3692434428f, +1732368034f,
+10703622f,,

106748928000

" 40864824000

" 168168000

32| +37948986f, _, +51102126f, ,

4616563f, +390117588f,
+6701781375f, + 2481846474f,

2261849856f,+2229061815f,
+1586077044f, —5121461f,
7| -8852838f, — 224093890f,

+349026372f, — 230586948f,
+299226050f,

584203f, +83659728f,, ,
+8440941375f, _, +8383546752f
+26265105f,_, —8111952f,
-133787f, , —9718596f,
~561950380f,, , + 24975451224f,
485424216, +18109100f, ,

+1605444f,

-6887 f,, —402672f, ,+27874005f, ,
+51015552f,, , +53970075f, ,

+30828528f,, , +44983f, , +826441
+455900f, , +113824584f , +117908664f, ,

+109885220f,,_, —976596f, ,

-9
2

739276f,, +58489176f,
+491088915f,,_, +1267922544f,
+1006809120f,,_, +171401976f,,
~42194069f,

302481f, , +6723935f ,

+27054245f,, +90958L1f,

10480453f,, + 7415784528f, |
+4647521745f, , — 4370314368f, ,
~1693823265f, , —173397072f,
h —2123957f,

40864824000 | (_57299919f, , +6811487435f,
+4| 11040444586, +792336726f,
+163656245f, , +7048911f

337524401, +1375937544f,,,
+8583673365f,, ,+11191323696f,
+4457911725f, , + 4726351441,
h +5942359f,
2554051500 36391167f, , +108748075f,
64| +180492462f . +127879902f

+27426835f, , +1217847f

1
2

Yna— Yn2 =

-1
2

YN~ Yn2 =

-1
2

-2
2

IV. NUMERICAL EXAMPLES

In this section, we apply the proposed methods to linear and
nonlinear first order systems BVPs, which were converted
from the second order BVPs in [27]. In Table | and Table II,
the maximum errors and the convergence rates of the solutions
for case 1 and case 2 are presented respectively. Also, Fig. 1
and Fig. 2 show the graphs of their exact solutions.

Case 1: Consider the linear BVP [27]:

Vi=Y,

NN,

2 1+x
for xe(0,1)

with boundary conditions:
y1(0)-2y,(0)=-1, vy, (1)+2y,(1)=3e
with exact solutions:
yi(x)=¢, y,(x)=¢"

Case 2: Consider the nonlinear BVP [27]:

Vi=Y,
e 4
| Y; = 2(y2)
for xe(0,1)

with boundary conditions:
1
¥1(0)-¥,(0)=1, y,(1)+ yz(l):—ln2—E

with exact solutions:

1 1
—log——, -
%(x) 91X ¥2(x) 1+X
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¥ —exact

— Yi(x)
-oer Y2(x)

. . Fig. 4: Exact Solution of Case 2
Fig. 1: Exact Solution of Case 1

Approxl

0.5 1.0 1.5 20 25

-04f — Yi(x)

Y2(x)
08k

-08}

Fig.5: A i lution of 2 ith
Fig. 2: Approximate Solution of Case 1 computed with 195 pproxlurréa{t/e'v? ?kuilinﬁ :COageZS)computed wit

HBVM (k = 2, h = 0.025)

Approx2
1 1 1 1 1 x
0.5 1.0 1.5 20 25

-0.2

-04f — Y1(x)
Y2(x)

08k

-0&F

05
-10f
L 1 x

. . . . Fig. 6: Approximate Solution of Case 2 computed with
Fig. 3: Approximate Solution of Case 1 computed with HBVM (k = 6, h = 0.025)

HBVM (k = 4, h = 0.025)
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V. CONCLUSION

A new class of BVMs: HBVMs were introduced with cases
2, 4 and 6 and applied to two-point BVPs with mixed

boundary conditions. The maximum error and

rate of

convergence of the solutions were presented to illustrate the
efficiency of these new methods.
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Table I: Maximum errors for HBVMs of order 2, 4 and 6 (Case 1)

HBVM of order 2 HBVM of order 4 HBVM of order 6
h ||e||w Rate ||e||oo Rate ||e||oo Rate
le-1 1.24993e-09 - 1.50576e-11 - 9.07355e-09 -
5e-2 1.96973e-11 5.99 5.29879e-12 151 8.89963e-09 0.03
2.5e-2 3.09246-13 5.99 6.25188e-12 0.24 4.24738e-09 1.07
1.25e-2 5.24044e-15 5.88 5.40719e-12 0.21 6.98025e-09 0.72
6.25e-3 1.60119e-15 1.71 1.30816e-11 1.27 1.09309e-08 0.65
Table 11: Maximum errors for HBVMs of order 2, 4 and 6 (Case 2)
HBVM of order 2 HBVM of order 4 HBVM of order 6
h ||e||w Rate ||e||oo Rate ||e||oo Rate
le-1 1.35839¢-07 - 3.70304e-07 - 4.51940e-08 -
5e-2 2.54603e-09 5.74 1.94881e-09 7.57 1.79255e-09 4.66
2.5e-2 4.39060-11 5.86 5.98631e-12 8.35 6.75463e-10 1.41
1.25e-2 7.21997e-13 5.93 4.08598e-12 0.55 1.73838e-09 1.36
6.25e-3 1.15875e-14 5.96 7.28745e-12 0.83 9.31409e-10 0.90
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