The Solution of Boundary Value Problems with Mixed Boundary Conditions via Boundary Value Methods

Grace O. Akinlabi, Raphael B. Adeniyi, and Enahoro A. Owoloko

Abstract

Boundary Value Methods (BVMs) are methods based on Linear Multistep Methods (LMMs), which are used for the numerical approximation of Differential Equations (DEs). These methods were introduced to overcome the weaknesses of the LMMs.

In this paper, we introduce a new class of BVMs - Hybrid Boundary Value Methods (HBVMs) and used them to solve first order systems BVPs with mixed boundary conditions by using the specific cases: 2, 4 and 6 . These methods are also based on LMMs where data are used at both step and off-step points.

The maximum errors and rate of convergence (ROC) of the solutions are reported for these cases to illustrate the effectiveness of these new class of methods.

Keywords-Boundary value methods, boundary value problems, hybrid formula, linear multistep method.

I. Introduction

NUMERICAL analysis continues to be an active field of study in science and engineering as Numerical Analysts have introduced and continues to develop new and better numerical methods for solving Differential problems resulting from the modelisation of real world phenomena [1] - [4].

The Boundary Value Methods (BVMs) were introduced to overcome the limitations suffers by the Linear Multistep Methods (LMMs). Some of these problems are highlighted in [5] - [7].

Several BVMs have been introduced and their stability analysis fully investigated. See [7] - [18] for comprehensive work on BVMs.

In this work, we present the hybrids of the BVMs namely Hybrid Boundary Value Methods (HBVMs). As hybrid methods share the characteristic property of Runge-Kutta methods, which are more flexible than the LMMs in the way they are used [19] - [22]. Our intention is to develop BVMs that share this characteristic.
This is done by using the Adam Moulton Methods at both step

[^0]and off-step points. These methods are then applied as BVMs and used to solve the two-point BVP of the form:
\[

$$
\begin{align*}
& y_{1}^{\prime}(x)=f_{1}\left(x, y_{1}(x), y_{2}(x)\right) \tag{1}\\
& y_{2}^{\prime}(x)=f_{2}\left(x, y_{1}(x), y_{2}(x)\right) \\
& a_{0} y(0)-b_{0} y(0)=\alpha_{0}, \quad a_{1} y(1)-b_{1} y(1)=\alpha_{1}
\end{align*}
$$
\]

where all $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are continuous functions that satisfy the existence and uniqueness conditions, guaranteed by Henrici in [23]
The numerical integration of BVPs by BVMs were first considered by Brugnano and Trigiante in [24] where they used the two symmetric schemes: Extended Trapezoidal Rule (ETR) of order 4 and Top Order Method (TOM) of order 6.

II. Overview of the Boundary Value Methods [25]- [26]

In this section, we give a brief description of the BVMs.
Consider the IVP:

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \quad x \in\left[x_{0}, x_{N}\right] \tag{2}
\end{equation*}
$$

To approximate this problem, we consider the k-step LMF:

$$
\begin{equation*}
\sum_{r=0}^{k} \alpha_{r} y_{n+r}=h \sum_{r=0}^{k} \beta_{r} f_{n+r} \tag{3}
\end{equation*}
$$

This discrete problem needs k independent conditions to be imposed so as to get the discrete solution $\left\{y_{n}\right\}$. Now, the first $k-1$ values need to be generated, since the IVP (2) has provided the first value y_{0}. Hence, we are to obtain the $k-1$ values: y_{0}, \ldots, y_{k-1} of the discrete solution.

By this process, we say that the given continuous IVP has been approximated by means of a discrete IVP and this is what is known as IVM.

On the other hand, if we decide to fix the first k_{1} values of the discrete solution, $y_{0}, \ldots, y_{k_{1}-1}$ and the last k_{2} values of the discrete solution, $y_{N}, \ldots, y_{N+k_{2}-1}$ such that k_{1}, k_{2} are integers and $k_{1}+k_{2}=k$. The discrete problem becomes.

$$
\begin{equation*}
\sum_{r=-k_{1}}^{k_{2}} \alpha_{r+k_{1}} y_{n+r}=h \sum_{r=-k_{1}}^{k_{2}} \beta_{r+k_{1}} f_{n+r} \tag{4}
\end{equation*}
$$

By this, we have succeeded in fixing the first k_{1} and final k_{2} values of the discrete solution.

By this process, we say that the continuous IVP has been approximated by means of a discrete BVP and this approach is
what is called BVM.

III. Derivation of Methods (HBVMs)

We shall construct, via interpolation and collocation, methods of the form:

$$
y_{n+v}-y_{n+v-1}=h \sum_{r=0\left(\frac{1}{2}\right)}^{k} \beta_{r} f_{n+r}
$$

where $v= \begin{cases}\frac{k+1}{2}, & \text { for odd } k \\ \frac{k}{2}, & \text { for even } k\end{cases}$
For example for $k=1, v=1$ we have the formula

$$
y_{n+1}-y_{n}=h\left\lfloor\beta_{0} f_{n}+\beta_{\frac{1}{2}} f_{n+\frac{1}{2}}+\beta_{0} f_{n+1}\right\rfloor
$$

After the derivation we implement these LMMs as BVMs while considering two specific cases: $k=4$ and 6 .

A. For case $k=2$

The main method is as follows:

$$
y_{n+2}-y_{n}=\frac{h}{45}\left[7 f_{n}+12 f_{n+1}+7 f_{n+2}+32\left(f_{n+\frac{1}{2}}+7 f_{n+\frac{3}{2}}\right)\right]
$$

which is used together with the following initial methods:

$$
y_{\frac{1}{2}}-y_{0}=\frac{h}{1400}\left[251 f_{0}-264 f_{1}-19 f_{2}+646 f_{\frac{1}{2}}+106 f_{\frac{3}{2}}\right]
$$

and the final methods

$$
\begin{aligned}
& y_{N-1}-y_{N}=-\frac{h}{180}\left[29 f_{N}+24 f_{N-1}-f_{N-2}+124 f_{N-\frac{1}{2}}+4 f_{N-\frac{3}{2}}\right] \\
& y_{N-\frac{3}{2}}-y_{N}=h\left\lfloor\frac{27}{160} f_{N}+\frac{9}{20} f_{N-1}-\frac{3}{160} f_{N-2}+\frac{51}{80} f_{N-\frac{1}{2}}+\frac{21}{80} f_{N-\frac{3}{2}}\right\rfloor
\end{aligned}
$$

B. For case $k=4$

The main method is as follows:

$$
\left.y_{n+3}-y_{n+1}=\frac{h}{28350} \left\lvert\, \begin{array}{l}
13 f_{n}+5494 f_{n+1}+10870 f_{n+2} \\
+5494 f_{n+3}+13 f_{n+4} \\
-32\left(7 f_{n+\frac{1}{2}}-551\left(f_{n+\frac{3}{2}}+f_{n+\frac{5}{2}}\right)+7 f_{n+\frac{1}{2}}\right)
\end{array}\right.\right]
$$

which is used together with the following initial methods:

$$
\begin{aligned}
& y_{\frac{1}{2}}-y_{1}=\frac{h}{7257600}\left[\left.\begin{array}{l}
33953 f_{0}-3244786 f_{1}-1317280 f_{2} \\
-294286 f_{3}-7297 f_{4}-1375594 f_{\frac{1}{2}} \\
+1752542 f_{\frac{3}{2}}+755042 f_{\frac{5}{2}}+68906 f_{\frac{7}{2}}
\end{array} \right\rvert\,\right. \\
& y_{\frac{3}{2}}-y_{1}=\frac{h}{7257600}\left|\begin{array}{l}
7297 f_{0}+1638286 f_{1}-833120 f_{2} \\
-142094 f_{3}-3233 f_{4}-99626 f_{\frac{1}{2}} \\
+2631838 f_{\frac{3}{2}}+397858 f_{\frac{5}{2}}+31594 f_{\frac{7}{2}}
\end{array}\right| \\
& y_{\frac{5}{2}}-y_{1}=\frac{h}{89600}\left[\left.\begin{array}{l}
81 f_{0}+19118 f_{1}+44640 f_{2}-2862 f_{3}-49 f_{4} \\
-1098 f_{\frac{1}{2}}+50814 f_{\frac{3}{2}}+23234 f_{\frac{5}{2}}+552 f_{\frac{7}{2}}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

and the final methods
$y_{N-4}-y_{N-1}=-\frac{h}{2800}\left[\begin{array}{l}-9 f_{N}+158 f_{N-1}-360 f_{N-2}+18 f_{N-3} \\ +401 f_{N-4}+8\binom{9 f_{N-\frac{1}{2}}+333 f_{N-\frac{3}{2}}}{+403 f_{N-\frac{5}{2}}+279 f_{N-\frac{7}{2}}}\end{array}\right]$

$$
\begin{aligned}
& y_{N-\frac{7}{2}}-y_{N-1}=-\frac{5 h}{290304}\left[\begin{array}{l}
85 f_{N}+13606 f_{N-1}+10546 f_{N-\frac{7}{2}} \\
+5\binom{6560 f_{N-2}+7442 f_{N-3}-49 f_{N-4}}{-202 f_{N-\frac{1}{2}}+6014 f_{N-\frac{3}{2}}+4418 f_{N-\frac{5}{2}}}
\end{array}\right] \\
& y_{N-2}-y_{N-1}=-\frac{h}{226800}\left|\begin{array}{l}
127 f_{N}+44446 f_{N-1}+43480 f_{N-2} \\
-494 f_{N-3}-23 f_{N-4}-1976 f_{N-\frac{1}{2}} \\
+141928 f_{N-\frac{3}{2}}-872 f_{N-\frac{5}{2}}+184 f_{N-\frac{7}{2}}
\end{array}\right| \\
& y_{N}-y_{N-1}=-\frac{h}{226800}\left\{\begin{array}{l}
-32377 f_{N}+42494 f_{N-1}+116120 f_{N-2} \\
+31154 f_{N-3}+833 f_{N-4} \\
-8\binom{22823 f_{N-\frac{1}{2}}+15011 f_{N-\frac{3}{2}}}{+9341 f_{N-\frac{5}{2}}+953 f_{N-\frac{7}{2}}}
\end{array}\right\}
\end{aligned}
$$

C. For case $k=6$

The main method is as follows:

$$
\left.y_{n+4}-y_{n+2}=\frac{h}{2554051500} \left\lvert\, \begin{array}{l}
28151 f_{n}+4721736 f_{n+1}+529200405 f_{n+2} \\
+1047943344 f_{n+3}+529200405 f_{n+4} \\
+4721736 f_{n+5}+28151 f_{n+6} \\
-64\left(\begin{array}{l}
7923 f_{n+\frac{1}{2}}+531095 f_{n+\frac{3}{2}} \\
-23916042 f_{n+\frac{5}{2}}-23916042 f_{n+\frac{7}{2}} \\
+531095 f_{n+\frac{9}{2}}+7923 f_{n+\frac{11}{2}}
\end{array}\right)
\end{array}\right.\right]
$$

which is used together with the following initial methods:
$\left.y_{\frac{1}{2}}-y_{2}=\frac{h}{21525504000} \left\lvert\, \begin{array}{l}50840663 f_{0}-15631690812 f_{1} \\ -17564506125 f_{2}-13516516608 f_{3} \\ -4999623795 f_{4}-510865092 f_{5} \\ -6279127 f_{6}-3507456066 f_{\frac{1}{2}} \\ -3243018230 f_{\frac{3}{2}}+15178447404 f_{\frac{5}{2}} \\ +9451486164 f_{\frac{7}{2}}+1927727350 f_{\frac{9}{2}} \\ +83198274 f_{\frac{11}{2}}\end{array}\right.\right]$
$y_{\frac{3}{2}}-y_{2}=\frac{h}{5230697472000}\left[\begin{array}{l}456196373 f_{0}+72649122828 f_{1} \\ -2008959454935 f_{2}-576826591488 f_{3} \\ -171945526185 f_{4}-15894332172 f_{5} \\ -184329877 f_{6}-7728247206 f_{\frac{1}{2}} \\ -1152341705090 f_{\frac{3}{2}}+826951939524 f_{\frac{5}{2}} \\ +353393854524 f_{\frac{2}{2}}+62574497410 f_{\frac{5}{2}} \\ +2505840294 f_{\frac{11}{2}}\end{array}\right]$
$y_{\frac{5}{2}}-y_{2}=\frac{h}{5230697472000}\left[\begin{array}{l}184329877 f_{0}+22105977612 f_{1} \\ +1284137567145 f_{2}-510641870592 f_{3} \\ -116161302825 f_{4}-9856152588 f_{5} \\ -109551893 f_{6}-2852484774 f_{\frac{1}{2}} \\ -125367467650 f_{\frac{3}{2}}+1771726903236 f_{\frac{5}{2}} \\ +260516522556 f_{\frac{3}{2}}+40149664130 f_{\frac{5}{2}} \\ +1516601766 f_{\frac{11}{2}}\end{array}\right]$
$\left.y_{\frac{7}{2}}-y_{2}=\frac{h}{21525504000} \left\lvert\, \begin{array}{l}688087 f_{0}+80355012 f_{1} \\ +4938122355 f_{2}+10933456128 f_{3} \\ -824424435 f_{4}-51176388 f_{5} \\ -521303 f_{6}-10514754 f_{\frac{1}{2}} \\ -451692790 f_{\frac{3}{2}}+11828012076 f_{\frac{5}{2}} \\ +5609039316 f_{\frac{7}{2}} \\ +229447670 f_{\frac{9}{2}}+7465026 f_{\frac{11}{2}}\end{array}\right.\right]$
$\left.y_{\frac{9}{2}}-y_{2}=\frac{5 h}{41845579776} \left\lvert\, \begin{array}{l}387173 f_{0}+40903116 f_{1} \\ +2009196729 f_{2}+4356823296 f_{3} \\ +4948419015 f_{4}-100766412 f_{5} \\ -637669 f_{6}-5670918 f_{\frac{1}{2}} \\ -211497890 f_{\frac{3}{2}}+4450127364 f_{\frac{5}{2}} \\ +3692434428 f_{\frac{7}{2}}+1732368034 f_{\frac{9}{2}} \\ +10703622 f_{\frac{11}{2}}\end{array}\right.\right]$
$\left.y_{\frac{11}{2}}-y_{2}=-\frac{7 h}{106748928000}\left\{\begin{array}{l}4616563 f_{0}+390117588 f_{1} \\ +6701781375 f_{2}+2481846474 f_{\frac{11}{2}} \\ -7\left(\begin{array}{l}2261849856 f_{3}+2229061815 f_{4} \\ +1586077044 f_{5}-5121461 f_{6} \\ -8852838 f_{\frac{1}{2}}-224093890 f_{\frac{3}{2}} \\ +349026372 f_{\frac{5}{2}}-230586948 f_{\frac{7}{2}} \\ +299226050 f_{\frac{9}{2}}\end{array}\right.\end{array}\right)\right\}$
and the final methods
$y_{N-3}-y_{N-2}=-\frac{h}{40864824000}\left|\begin{array}{l}584203 f_{N}+83659728 f_{N-1} \\ +8440941375 f_{N-2}+8383546752 f_{N-3} \\ +26265105 f_{N-4}-8111952 f_{N-5} \\ -133787 f_{N-6}-9718596 f_{N-\frac{1}{2}} \\ -561950380 f_{N-\frac{3}{2}}+24975451224 f_{N-\frac{5}{2}} \\ -485424216 f_{N-\frac{7}{2}}+18109100 f_{N-\frac{9}{2}} \\ +1605444 f_{N-\frac{1}{2}}\end{array}\right|$
$\left.y_{N-5}-y_{N-2}=-\frac{h}{168168000} \left\lvert\, \begin{array}{l}-6887 f_{N}-402672 f_{N-1}+27874005 f_{N-2} \\ +51015552 f_{N-3}+53970075 f_{N-4} \\ +30828528 f_{N-5}+44983 f_{N-6}+82644 f_{N-\frac{1}{2}} \\ +455900 f_{N-\frac{3}{2}}+113824584 f_{N-\frac{5}{2}}+117908664 f_{N-\frac{7}{2}} \\ +109885220 f_{N-\frac{9}{2}}-976596 f_{N-\frac{11}{2}}\end{array}\right.\right]$

$$
y_{N-6}-y_{N-2}=\frac{2 h}{638512875}\left\{\begin{array}{l}
739276 f_{N}+58489176 f_{N-1} \\
+491088915 f_{N-2}+1267922544 f_{N-3} \\
+1006809120 f_{N-4}+171401976 f_{N-5} \\
-42194069 f_{N-6} \\
-32\left(\begin{array}{l}
302481 f_{N-\frac{1}{2}}+6723935 f_{N-\frac{3}{2}} \\
+37948986 f_{N-\frac{5}{2}}+51102126 f_{N-\frac{7}{2}} \\
+27054245 f_{N-\frac{9}{2}}+9095811 f_{N-\frac{1}{2}}^{2}
\end{array}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& y_{N-1}-y_{N-2}=\frac{h}{40864824000}\left\{\begin{array}{l}
10480453 f_{N}+7415784528 f_{N-1} \\
+4647521745 f_{N-2}-4370314368 f_{N-3} \\
-1693823265 f_{N-4}-173397072 f_{N-5} \\
-2123957 f_{N-6} \\
+4\left(\begin{array}{l}
-57299919 f_{N-\frac{1}{2}}+6811487435 f_{N-\frac{3}{2}} \\
+1040444586 f_{N-\frac{5}{2}}+792336726 f_{N-\frac{7}{2}} \\
+163656245 f_{N-\frac{9}{2}}+7048911 f_{N-\frac{1}{2}}
\end{array}\right)
\end{array}\right\} \\
& y_{N}-y_{N-2}=-\frac{h}{2554051500}\left\{\begin{array}{l}
-337524401 f_{N}+1375937544 f_{N-1} \\
+8583673365 f_{N-2}+11191323696 f_{N-3} \\
+4457911725 f_{N-4}+472635144 f_{N-5} \\
+5942359 f_{N-6} \\
-64\left(\begin{array}{l}
36391167 f_{N-\frac{1}{2}}+108748075 f_{N-\frac{3}{2}} \\
+180492462 f_{N-\frac{5}{2}}+127879902 f_{N-\frac{7}{2}} \\
+27426835 f_{N-\frac{9}{2}}+1217847 f_{N-\frac{11}{2}}
\end{array}\right)
\end{array}\right\}
\end{aligned}
$$

IV. Numerical Examples

In this section, we apply the proposed methods to linear and nonlinear first order systems BVPs, which were converted from the second order BVPs in [27]. In Table I and Table II, the maximum errors and the convergence rates of the solutions for case 1 and case 2 are presented respectively. Also, Fig. 1 and Fig. 2 show the graphs of their exact solutions.

Case 1: Consider the linear BVP [27]:

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=\frac{y_{1}+x y_{2}}{1+x}
\end{aligned}
$$

for $x \in(0,1)$
with boundary conditions:

$$
y_{1}(0)-2 y_{2}(0)=-1, \quad y_{1}(1)+2 y_{2}(1)=3 e
$$

with exact solutions:

$$
y_{1}(x)=e^{x}, \quad y_{2}(x)=e^{x}
$$

Case 2: Consider the nonlinear BVP [27]:

$$
\begin{aligned}
& \quad y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=\frac{e^{2 y_{1}}+\left(y_{2}\right)^{2}}{2} \\
& \text { for } x \in(0,1)
\end{aligned}
$$

with boundary conditions:

$$
y_{1}(0)-y_{2}(0)=1, \quad y_{1}(1)+y_{2}(1)=-\ln 2-\frac{1}{2}
$$

with exact solutions:

$$
y_{1}(x)=\log \frac{1}{1+x}, \quad y_{2}(x)=-\frac{1}{1+x}
$$

Fig. 1: Exact Solution of Case 1

Fig. 2: Approximate Solution of Case 1 computed with $\operatorname{HBVM}(k=2, h=0.025)$

Fig. 3: Approximate Solution of Case 1 computed with $\operatorname{HBVM}(k=4, h=0.025)$

Fig. 4: Exact Solution of Case 2

Fig. 5: Approximate Solution of Case 2 computed with HBVM ($k=4, h=0.025$)

Fig. 6: Approximate Solution of Case 2 computed with $\operatorname{HBVM}(k=6, h=0.025)$

V. Conclusion

A new class of BVMs: HBVMs were introduced with cases 2, 4 and 6 and applied to two-point BVPs with mixed boundary conditions. The maximum error and rate of convergence of the solutions were presented to illustrate the efficiency of these new methods.

ACKNOWLEDGMENT

The authors are grateful to Covenant University for the full support and also for the provision of good working environment. They also express their gratitude to the anonymous reviewer(s) for their helpful and constructive contributions.

REFERENCES

[1] G.O. Akinlabi and S. O. Edeki, "The solution of initial-value wave-like models via Perturbation Iteration Transform Method," Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2017, IMECS 2017, 15-17 March, 2017, Hong Kong, pp 1015-1018.
[2] S.O. Edeki, G.O. Akinlabi, A.O. Akeju, "A Handy Approximation Technique for Closed-form and Approximate Solutions of TimeFractional Heat and Heat-Like Equations with Variable Coefficients," Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2016, WCE 2016, 29 June - 1 July, 2016, London, U.K., pp 88-92.
[3] S. O. Edeki, G. O. Akinlabi, S. A. Adeosun. (2016), Analytic and Numerical Solutions of Time-Fractional Linear Schrodinger Equation. Communications in Mathematics and Applications, 7(1), 1-10.
[4] G. O. Akinlabi, S. O. Edeki. (2017). Perturbation Iteration Transform Method for the Solution of Newell-Whitehead-Segel Model Equations. Journal of Mathematics and Statistics, 13(1), 24-29.
[5] W. B. Gragg and H. I. Stetter, "Generalized multistep predictorcorrector methods", J. Assoc. Comput Mach., 11, (1964), 188-209.
[6] G. Dahlquist, "Convergence and Stability in the Numerical Integration of Ordinary Differential Equations". Math. Scand., 4, (1956), 33-53.
[7] T. A. Biala, "A Computational Study of the Boundary Value Methods and the Block Unification Methods for ", Abstract and Applied Analysis. vol. 2016, Article ID 8465103, 14 pages, 2016.
[8] F. Mazzia, "Boundary Value Methods for the Numerical Solution of Boundary Value Problems in Differential-Algebraic Equations". Bolletino della Unione Matematica Italiana, (1997), 579-593.
[9] L. Brugnano and D. Trigiante, "Block Boundary Value Methods for Linear Hamiltonian Systems". Appl. Math. Comput., 81, (1997), 49-68.
[10] P. Amodio and F. Iavernaro, "Symmetric boundary value methods for second initial and boundary value problems". Medit. J. Maths., 3, (2006), 383-398.
[11] T. A. Biala and S. N. Jator, "A boundary value approach for solving three-dimensional elliptic and hyperbolic Partial Differential Equations", SpringerPlus Journals, vol. 4, article no 588, 2015
[12] P. Amodio and F. Mazzia, "A Boundary Value Approach to the Numerical Solution of Initial Value Problems by Multistep Methods", J Difference Eq. Appl., 1, (1995), 353-367.
[13] L. Aceto, P. Ghelardoni and C. Magherini, "PGSCM: A family of PStable Boundary Value Methods for Second Order Initial Value Problems", Journal of Computational and Applied Mathematics, 236, (2012), 3857-3868.
[14] T. A. Biala, S. N. Jator and R. B. Adeniyi, "Boundary Value Methods for Second-Order PDEs via the Lanczos-Chebyshev Reduction Technique". Mathematical Problems in Engineering. Vol. 2017, Article ID 5945080, 11 pages.
[15] T. A. Biala, S. N. Jator and R. B. Adeniyi, "Numerical approximations of second order PDEs by boundary value methods and the method of lines", Afrika Matematika, 2016.
[16] P. Amodio, A-stable k-step linear multistep formulae of order 2 k for the solution of stiff ODEs. Report 24/96, Dipartiment di Matematica, Universita degli Studi di Bari.
[17] L. Brugnano and D. Trigiante, "Boundary Value Methods: The Third Way between linear multistep and Runge-Kutta methods", Computers Math. Applic., 36 (1998), 269-284.
[18] L. Brugnano and D. Trigiante, Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science, Amsterdam, 1998.
[19] T. A. Anake, Continuous implicit hybrid one-step methods for the solution of initial value problems of general second-order ordinary differential equations, Ph.D Thesis. Covenant University, Nigeria.
[20] C. W. Gear, "Hybrid Methods for Initial Value Problems in Ordinary Differential Equations", Math. Comp., 21, (1967), 146-156.
[21] J. C. Butcher, "A modified multistep method for the numerical integration of ordinary differential equations", J. Assoc. Comput. Mach., 12, (1965), 124-135.
[22] A. K. Ezzeddine and G. Hojjati, "Hybrid extended backward differentiation formulas for stiff systems", Internation Journal of Nonlinear Science, 1292, (2011), 196-204.
[23] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York, 1956.
[24] L. Brugnano and D. Trigiante, "High-Order Multistep Methods for Boundary Value Problems", Applied Numerical Mathematics, 18, (1995), 79-94.
[25] S. N. Jator and J. Li, "Boundary Value Methods via a Multistep Method with Variable Coefficients for Second Order Initial and Boundary Value Problems", International Journal of Pure and Applied Mathematics, 50, (2009), 403-420.
[26] L. Brugnano and D. Trigiante, "Convergence and Stability of Boundary Value Methods for Ordinary Differential Equations", Journal of Computational and Applied Mathematics, 66, (1996), 97-109.
[27] R. S. Stepleman, "Triadiagonal Fourth Order Approximations to General Two-Point Nonlinear Boundary Value Problems with Mixed Boundary Conditions", Mathematics of ComputationI, 30, (1976), 92103.

Table I: Maximum errors for HBVMs of order 2, 4 and 6 (Case 1)

h	HBVM of order 2		HBVM of order 4		HBVM of order 6							
	$\\|e\\|_{\infty}$	Rate	$\\|e\\|_{\infty}$	Rate	$\\|e\\|_{\infty}$	Rate						
$1 \mathrm{e}-1$	$1.24993 \mathrm{e}-09$	-	$1.50576 \mathrm{e}-11$	-	$9.07355 \mathrm{e}-09$	-						
5e-2	$1.96973 \mathrm{e}-11$	5.99	$5.29879 \mathrm{e}-12$	1.51	8.89963e-09	0.03						
$2.5 \mathrm{e}-2$	3.09246-13	5.99	$6.25188 \mathrm{e}-12$	0.24	$4.24738 \mathrm{e}-09$	1.07						
$1.25 \mathrm{e}-2$	$5.24044 \mathrm{e}-15$	5.88	$5.40719 \mathrm{e}-12$	0.21	$6.98025 \mathrm{e}-09$	0.72						
$6.25 \mathrm{e}-3$	$1.60119 \mathrm{e}-15$	1.71	$1.30816 \mathrm{e}-11$	1.27	$1.09309 \mathrm{e}-08$	0.65						

Table II: Maximum errors for HBVMs of order 2, 4 and 6 (Case 2)

h	HBVM of order 2		HBVM of order 4		HBVM of order 6							
	$\\|e\\|_{\infty}$	Rate	$\\|e\\|_{\infty}$	Rate	$\\|e\\|_{\infty}$	Rate						
$1 \mathrm{e}-1$	$1.35839 \mathrm{e}-07$	-	$3.70304 \mathrm{e}-07$	-	$4.51940 \mathrm{e}-08$	-						
$5 \mathrm{e}-2$	$2.54603 \mathrm{e}-09$	5.74	1.94881e-09	7.57	$1.79255 \mathrm{e}-09$	4.66						
$2.5 \mathrm{e}-2$	4.39060-11	5.86	$5.98631 \mathrm{e}-12$	8.35	$6.75463 \mathrm{e}-10$	1.41						
$1.25 \mathrm{e}-2$	7.21997e-13	5.93	$4.08598 \mathrm{e}-12$	0.55	$1.73838 \mathrm{e}-09$	1.36						
$6.25 \mathrm{e}-3$	$1.15875 \mathrm{e}-14$	5.96	$7.28745 \mathrm{e}-12$	0.83	$9.31409 \mathrm{e}-10$	0.90						

[^0]: G. O. Akinlabi is with the Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria. (e-mail: grace.akinlabi@ covenantuniversity.edu.ng).
 R. B. Adeniyi is with the Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria. (e-mail: raphade@unilorin.edu.ng).
 E. A. Owolodo is with the Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria. (e-mail: alfred.owoloko@ convenantuniversity.edu.ng).

